- Published on
The Algorithm Design Manual (3rd) Exercise Solution 'E3-28'
Table of Contents
Introduction
This series is my solutions for algorithm exercises in'The Algorithm Design Manual' 3rd edition.
It's my solutions, not model answers, so if you find some mistakes or more sophisticated solutions, please post in comment area below.
Repository
Exercise 3-28
Question
Let be an array of real numbers. Design an algorithm to perform any sequence of the following operations:
- Add(i,y) – Add the value y to the ith number.
- Partial-sum(i) – Return the sum of the first i numbers, that is,
There are no insertions or deletions; the only change is to the values of the numbers. Each operation should take steps. You may use one additional array of size n as a work space.
Solution
Outline
We can use the extra workspace array as logical binary tree storing the data to accomplish operations.
The position of root of subtree whose range is is its middle point(). Each vertex has partial sum of itself and elements in its left-side branch.
Code
#include <cassert>
#include <iostream>
#include <stdexcept>
#include <vector>
class Partial_sum {
private:
std::vector<double> range_sums;
constexpr size_t i_root_of_range(size_t l, size_t r) const {
return (l + r) / 2;
}
double build(const std::vector<double> &orig, size_t lb, size_t ub) {
if (ub < lb) return 0;
auto mid{i_root_of_range(lb, ub)};
range_sums[mid] = orig[mid] + (mid > 0 ? build(orig, lb, mid - 1) : 0);
return range_sums[mid] + build(orig, mid + 1, ub);
}
public:
Partial_sum(std::initializer_list<double> lst) : range_sums(lst.size()) {
std::vector<double> orig{lst};
build(orig, 0, orig.size() - 1);
}
void add(size_t i, double y) {
if (i < 0 || range_sums.size() <= i)
throw std::invalid_argument("invalid_argument");
size_t lb{0};
size_t ub{range_sums.size() - 1};
size_t mid;
while ((mid = i_root_of_range(lb, ub)) != i) {
if (i < mid) {
range_sums[mid] += y;
ub = mid - 1;
} else
lb = mid + 1;
}
range_sums[i] += y;
}
double query_partial_sum(size_t i) const {
if (i < 0 || range_sums.size() <= i)
throw std::invalid_argument("invalid_argument");
double total_val{0};
size_t lb{0};
size_t ub{range_sums.size() - 1};
size_t mid;
while ((mid = i_root_of_range(lb, ub)) != i) {
if (i < mid) {
ub = mid - 1;
} else {
total_val += range_sums[mid];
lb = mid + 1;
}
}
return total_val + range_sums[i];
}
};
int main(int argc, char const *argv[]) {
Partial_sum ps{1};
assert(ps.query_partial_sum(0) == 1);
ps.add(0, 2);
assert(ps.query_partial_sum(0) == 3);
ps = {2, 3};
assert(ps.query_partial_sum(0) == 2);
assert(ps.query_partial_sum(1) == 5);
ps.add(0, 4);
assert(ps.query_partial_sum(0) == 6);
assert(ps.query_partial_sum(1) == 9);
ps.add(1, -4);
assert(ps.query_partial_sum(0) == 6);
assert(ps.query_partial_sum(1) == 5);
ps = {1.5, 2.5, 3.1, 6.0, 4.2, 0.8, 8.5};
assert(ps.query_partial_sum(0) == 1.5);
assert(ps.query_partial_sum(2) == 7.1);
assert(ps.query_partial_sum(3) == 13.1);
assert(ps.query_partial_sum(4) == 17.3);
assert(ps.query_partial_sum(6) == 26.6);
ps.add(3, 4.0);
assert(ps.query_partial_sum(2) == 7.1);
assert(ps.query_partial_sum(3) == 17.1);
assert(ps.query_partial_sum(4) == 21.3);
return 0;
}